Abstract

Surface-enhanced Raman scattering (SERS) substrates with multiwavelength rainbow-trapping properties hold the potential for a one-size-fits-all platform for rapid and multiplexed disease detection. We present the first report on the utilization of rainbow-trapping width-graded nano-gratings, a new class of chirped metamaterials, to detect protein biomarkers. Using cytochrome c (Cc), a charged analyte with inherent difficulty in adsorbing onto sputtered silver films, we investigated methods of binding Cc on the silver nano-grating in order to improve the SERS signal strength at both 532 and 638 nm excitation. Cc was not detectable on the Ag nano-gratings without surface functionalization at 1 μM concentration. Upon charge reversal functionalization of the Ag nano-gratings, 1 μM Cc was detectable albeit not reliably. By further crosslinking 1 μM Cc to the functionalized Ag nano-gratings, the analyte-capture detection scheme greatly improved the SERS signal strength and reliability at both excitation wavelengths and allowed for quantification of their coefficients of variation with values down to 27%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.