Abstract

Coordination polymers (CPs) have garnered much attention in the past several years for the relative facility of their synthesis and potential benefit in diverse applications such as gas separation, energy storage, drug delivery and as novel bio-imaging compounds. To date there have been relatively few reports of CP assembly from peptide-based precursors. CPs generated from biomolecules offer several potential advantages over their synthetic counterparts including extensive structural diversity, intrinsic chirality and the capacity for introduction of catalytic or similar biological functionalities. Here we describe the construction of CPs utilizing protein cage nanoparticles (PCN) as secondary building units. The dodecameric Dps protein cage from the hyperthermophilic archeon Sulfolobus solfataricus was modified for metal binding by chemical ligation of metal-chelating functionalities to the cage exterior. Treatment of modified PCN with transition metals results in the rapid formation of PCN–metal assemblies. These assemblies are characterized by a combination of dynamic light scattering, electron microscopy, small angle X-ray scattering and gas sorption studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call