Abstract
To survey the levels of protein-bound UV filters in the cortices and nuclei of normal human lenses as a function of age and to relate this to the concentration of free UV filters. Levels of each of the three kynurenine (Kyn) UV filters, 3-hydroxykynurenine glucoside (3OHKG), Kyn, and 3-hydroxykynurenine (3OHKyn), covalently attached to proteins, were determined by using a newly developed method of reductive capture, after base treatment of the intact lens proteins. The data show that, in the normal lens, each of the three UV filters became bound to proteins to a significant extent only after age 50 and, further, that the levels in the nucleus were much higher than in the cortex. These findings are consistent with the lens barrier that forms in middle age. 3OHKG was present at the highest levels followed by Kyn, with 3OHKyn being attached in the lowest amount. The ratio was 145:4:1 (3OHKG-Kyn-3OHKyn), with a total protein-bound UV filter concentration in the lens nucleus after age 50 of approximately 1300 picomoles/mg protein. This ratio is in agreement with 3OHKG being the most abundant free UV filter in the human lens and 3OHKyn being present in the lowest concentration with free Kyn present in intermediate amounts. The three Kyn UV filters are bound to the nuclear proteins of all normal lenses over the age of 50. Indeed in the center of older normal lenses, the concentration of UV filters bound to proteins is approximately equal to that of the free filters. Since bound UV filters promote oxidation of proteins after exposure to wavelengths of light that penetrate the cornea, lenses in middle-aged and older individuals may be more prone to photooxidation than those of young people.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.