Abstract

Kinetics of reduction of iron(IV) in ferrylmyoglobin by chlorogenate in neutral or moderately acidic aqueous solutions (0.16 M NaCl) to yield metmyoglobin was studied using stopped flow absorption spectroscopy. The reaction occurs by direct bimolecular electron transfer with (2.7 +/- 0.3) x 10(3) M(-)(1).s(-)(1) at 25.0 degrees C (DeltaH( )(#) = 59 +/- 6 kJ.mol(-)(1), DeltaS(#) = 15 +/- 22 J. mol(-)(1).K(-)(1)) for protonated ferrylmyoglobin (pK(a) = 4.95) and with 216 +/- 50 M(-)(1).s(-)(1) (DeltaH( )(#) = 73 +/- 8 kJ. mol(-)(1), DeltaS( )(#) = 41 +/- 30 J.mol(-)(1).K(-)(1)) for nonprotonated ferrylmyoglobin in parallel with reduction of a chlorogenate/ferrylmyoglobin complex by a second chlorogenate molecule with (8.6 +/- 1.1) x 10(2) M(-)(1).s(-)(1) (DeltaH( )(#) = 74 +/- 8 kJ.mol(-)(1), DeltaS( )(#) = 59 +/- 28 J.mol(-)(1).K(-)(1)) for protonated ferrylmyoglobin and with 61 +/- 9 M(-)(1).s(-)(1) (DeltaH( )(#) = 82 +/- 12 kJ.mol(-)(1), DeltaS( )(#) = 63 +/- 41 J. mol(-)(1).K(-)(1)) for nonprotonated ferrylmyoglobin. Previously published data on ascorbate reduction of ferrylmyoglobin are reevaluated according to a similar mechanism. For both protonated and nonprotonated ferrylmyoglobin the binding constant of chlorogenate is approximately 300 M(-)(1), and the modulation of ferrylmyoglobin as an oxidant by chlorogenate (or ascorbate) leads to a novel antioxidant interaction for reduction of ferrylmyoglobin by ascorbate in mixtures with chlorogenate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call