Abstract

Plasma membrane contains extrinsic as well as intrinsic proteins. Changes in the extrinsic proteins of lens membrane during human aging and cataract formation have not been investigated in detail. Unlike previous studies which examined lens membrane after being stripped of extrinsic proteins by treatment with chaotropic agents, we have isolated whole or 'native' lens membrane on a sucrose gradient by ultracentrifugation of the total water-insoluble protein. Essentially all of the water-insoluble protein from young to aged to cataractous human lens appeared membrane associated. In young lens (20-37 years old), most of the membrane banded at the 25/45% sucrose interface fraction. This fraction contained relatively little urea-soluble protein and likely represents fiber-cell plasma membrane with its physiologically associated extrinsic and intrinsic proteins. With aging (62-80 years old), about one-third of the membrane, as judged by the distribution of cholesterol, banded at a much higher density (50/58% sucrose fraction). The higher density was due to a great increase in the membrane's relative protein content (protein/cholesterol). Although this extra protein was composed of both urea-insoluble and -soluble fractions, the urea-soluble protein predominated in all lenses. Cataractous lens differed from aged-clear lens in that much more of the total membrane (70-75%) had shifted to the high density and participated in this massive binding of cytosolic proteins. Although alpha-crystallin was the principal extrinsic-membrane protein in young lens, high molecular weight aggregate of modified (acidic) crystallins accounted for the increased extrinsic protein in aging. The extrinsic proteins bound to both clear-aged and cataractous lens membrane were aggregated. In conclusion, examination of human lens native membrane fractions revealed that the association of crystallins with membrane in both aging and cataracts was much greater than previously recognized and most of this increased protein was non-covalently bound to the membrane. Much more of the lens total membrane from cataractous than clear-aged lens was involved in this massive protein association and the protein bound to cataract membrane appeared more highly aggregated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call