Abstract

To investigate the effects of single-nucleotide polymorphisms (SNPs) around the protein arginine N-methyltransferase 1 (PRMT1) gene on the incidence and severity of diabetic retinopathy (DR). A total of 310 Japanese patients with type 2 diabetes mellitus (T2DM) were investigated. Genotyping of ten tagged SNPs were performed by quantitative real-time polymerase chain reaction (qRT-PCR). The association between each SNP genotype and diabetic microangiopathy was assessed using univariate analysis in a dominant model of the minor alleles followed by multivariate logistic regression analysis with the propensity score matching (PSM) method. The effect of disease-related SNP on PRMT1 and hypoxia-inducible factor-1α (HIF-1α) mRNA levels in vivo was evaluated by qRT-PCR. In the univariate analysis, the minor A allele at rs374569 and the minor C allele at rs3745468 were associated with DR severity (P = 0.047 and P = 0.003, respectively), but not diabetic nephropathy and peripheral polyneuropathy severity. Multivariate analysis showed that the rs3745468 variant caused an increased incidence of proliferative DR (PDR) (odds ratio 9.37, 95% confidence interval 1.12-78.0, P = 0.039). In the PSM cohort, the patients carrying the rs3745468 variant had lower PRMT1 mRNA levels compared to those without the variant (P = 0.037), and there was an inverse correlation between PRMT1 and HIF-1α mRNA levels (r = -0.233, P = 0.035). The rs3745468 variant in the PRMT1 gene was associated with an increased incidence of PDR in Japanese patients with T2DM and might be involved in the HIF-1-dependent hypoxic pathway through altered PRMT1 levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call