Abstract

BackgroundMedulloblastoma (MB) is the most common pediatric brain tumor. Although standard-of-care treatment generally results in good prognosis, many patients exhibit treatment-associated lifelong disabilities. This outcome could be improved by employing therapies targeting the molecular drivers of this cancer. Attempts to do so in the SONIC HEDGEHOG MB subgroup (SHH-MB) have largely focused on the SHH pathway’s principal activator, smoothened (SMO). While inhibitors targeting SMO have shown clinical efficacy, recurrence and resistance are frequently noted, likely resulting from mutations in or downstream of SMO. Therefore, identification of novel SHH regulators that act on the pathway’s terminal effectors could be used to overcome or prevent such recurrence. We hypothesized that protein arginine methyltransferase 5 (PRMT5) is one such regulator and investigated its role and potential targeting in SHH-MB.MethodsPRMT5 expression in SHH-MB was first evaluated. Knockdown and pharmacological inhibitors of PRMT5 were used in SHH-MB sphere cultures to determine its effect on viability and SHH signaling. GLI1 arginine methylation was then characterized in primary SHH-MB tissue using LC–MS/MS. Finally, PRMT5 inhibitor efficacy was evaluated in vivo.ResultsPRMT5 is overexpressed in SHH-MB tissue. Furthermore, SHH-MB viability and SHH activity is dependent on PRMT5. We found that GLI1 isolated from SHH-MB tissues is highly methylated, including three PRMT5 sites that affect SHH-MB cell viability. Importantly, tumor growth is decreased and survival increased in mice given PRMT5 inhibitor.ConclusionsPRMT5 is a requisite driver of SHH-MB that regulates tumor progression. A clinically relevant PRMT5 inhibitor represents a promising candidate drug for SHH-MB therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call