Abstract

IRX1 is originally characterized as a tumor suppressor gene of gastric cancer (GC) by our group based on serially original studies. However, the molecular regulatory mechanisms of IRX1 are not clear yet. Here, we identified protein arginine methyltransferase 5 (PRMT5) as a major upstream regulator of IRX1 for determining GC progression. Expression of PRMT5 was significantly increased in human GC tissues (433 out of 602 cases, 71.93%) compared with normal gastric mucosa, and exhibited diagnostic and prognostic potential. Overexpression of PRMT5 promoted tumorigenicity and metastasis of GC cells, while knockdown of PRMT5 abrogated tumorigenicity and metastasis of GC cells in vitro and in vivo. By co-immunoprecipitation and chromatin immunoprecipitation assays, we proved that PRMT5 elevated methylation levels of tumor suppressor IRX1 promoter via recruiting DNMT3A at promoter region. Knockdown of PRMT5 in SGC7901 and NCI-N87 cells decreased the recruitment of DNMT3A at IRX1 promoter, and reduced the methylation level of IRX1 promoter, then re-activated IRX1 expression. Whereas, overexpression of PRMT5 could epigenetically suppress IRX1 expression. Overall, PRMT5 promoted tumorigenicity and metastasis of gastric cancer cells via epigenetic silencing of IRX1. Targeting PRMT5 in GC might inhibit the malignant characters of GC and drawing a novel therapeutic potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call