Abstract
Cancer cells must integrate multiple biosynthetic demands to drive indefinite proliferation. How these key cellular processes, such as metabolism and protein synthesis, crosstalk to fuel cancer cell growth is unknown. Here, we uncover the mechanism by which the Myc oncogene coordinates the production of the two most abundant classes of cellular macromolecules, proteins, and nucleic acids in cancer cells. We find that a single rate-limiting enzyme, phosphoribosyl-pyrophosphate synthetase 2 (PRPS2), promotes increased nucleotide biosynthesis in Myc-transformed cells. Remarkably, Prps2 couples protein and nucleotide biosynthesis through a specialized cis-regulatory element within the Prps2 5' UTR, which is controlled by the oncogene and translation initiation factor eIF4E downstream Myc activation. We demonstrate with a Prps2 knockout mouse that the nexus between protein and nucleotide biosynthesis controlled by PRPS2 is crucial for Myc-driven tumorigenesis. Together, these studies identify a translationally anchored anabolic circuit critical for cancer cell survival and an unexpected vulnerability for "undruggable" oncogenes, such as Myc. PAPERFLICK:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.