Abstract

In the growing field of proteomic research, rapid and simple protein analysis is a crucial component of protein identification. We report the use of immobilized trypsin on hybrid organic-inorganic organosiloxane (T-OSX) polymers for the on-surface, in situ digestion of four model proteins: melittin, cytochrome c, myoglobin, and bovine serum albumin. Tryptic digestion products were sampled, detected, and identified using desorption electrospray ionization mass spectrometry (DESI-MS) and nanoDESI-MS. These novel, reusable T-OSX arrays on glass slides allow for protein digestion in methanol:water solvents (1:1, v/v) and analysis directly from the same polymer surface without the need for sample preparation, high temperature, and pH conditions typically required for in-solution trypsin digestions. Digestion reactions were conducted with 2 μL protein sample droplets (0.35 mM) at incubation temperatures of 4, 25, 37, and 65 °C and digestion reaction times between 2 and 24 h. Sequence coverages were dependent on the hydrophobicity of the OSX polymer support and varied by temperature and digestion time. Under the best conditions, the sequence coverages, determined by DESI-MS, were 100% for melittin, 100% for cytochrome c, 90% for myoglobin, and 65% for bovine serum albumin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.