Abstract
In Part I of this work, we have studied the effect of ionic capacity (IC) on bovine serum albumin (BSA) adsorption equilibria and kinetics to poly(ethylenimine) (PEI)-grafted Sepharose FF, and found a critical IC (cIC, 600mmol/L), above which both protein capacity and uptake rate increased drastically. In this work, five PEI-Sepharose FF resins of typical ICs reported earlier were selected to explore the effect of ionic strength (IS) on the adsorption equilibria and kinetics of BSA. Commercially available DEAE (IC=160mmol/L) and Q Sepharose FF (IC=269mmol/L) resins were used for comparisons. It is found that at similar ionic capacities, protein adsorption capacities on both the PEI-Sepharose FF resins and the commercial resins decreased with increasing IS, but on the capacity sensitivity to salt concentration, the former was lower than the latter. In addition, the effective diffusivities (De) of the former were smaller than the latter in the entire IS range studied. The low IS sensitivity of adsorption capacity of the PEI-Sepharose FF resins could be interpreted by the increase of pore accessibility with increasing IS; the smaller De values in the PEI-Sepharose FF resins were considered due to the lack of surface diffusion in the PEI-Sepharose FF resins of low PEI densities. For the PEI-Sepharose FF resins of high ICs (520, 740 and 1220mmol/L), both protein capacity and De values increased first and then decreased with increasing IS. The increasing trend of protein capacity in the low IS range was considered due to the increase of accessible pores for BSA. The rise–fall trend of De was attributed to the dependencies of the “chain delivery” effect on protein capacity and binding strength, both of which are related to IS. Moreover, the IS sensitivity of the De for the resins of ICs>cIC (740 and 1220mmol/L) was much higher than those of ICs<cIC, further proving that the “chain delivery” effect in PEI layer did contribute significantly to the overall mass transfer at IC>cIC. Furthermore, the two PEI-Sepharose FF resins of ICs>cIC kept high adsorption capacities and De values up to 200–300mmol/L NaCl. Therefore, the operating IS ranges for these two PEI-Sepharose FF resins can be much broader than the traditional ion-exchange media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.