Abstract

BackgroundChitosan and Alginate were used as biopolymers to prepare membranes for protein adsorption. The network requires a cross-linker able to form bridges between polymeric chains. Viscopearl-mini® (VM) was used as a support to synthesize them. Six different types of membranes were prepared using the main compounds of the matrix: VM, Chitosan of low and medium molecular weight, and Alginate.ResultsExperiments were carried out to analyze the interactions within the matrix and improvements were found against porous cellulose beads. SEM characterization showed dispersion in the compounds. According to TGA, thermal behaviour remains similar for all compounds. Mechanical tests demonstrate the modulus of the composites increases for all samples, with major impact on materials containing VM. The adsorption capacity results showed that with the removal of globular protein, as the adsorbed amount increased, the adsorption percentage of Myoglobin from Horse Heart (MHH) decreased. Molecular electrostatic potential studies of Chitosan–Alginate have been performed by density functional theory (DFT) and ONIOM calculations (Our own N-layered integrated molecular orbital and molecular mechanics) which model large molecules by defining two or three layers within the structure that are treated at different levels of accuracy, at B3LYP/6-31G(d) and PM6/6-31G(d) level of theory, using PCM (polarizable continuum model) solvation model.ConclusionsFinally, Viscopearl-mini® acts as a suitable support on the matrix for the synthesis of Chitosan–Alginate membranes instead of cross-linkers usage. Therefore, it suggests that it is a promise material for potential applications, such as: biomedical, wastewater treatment, among others.Graphical abstractChitosan, Alginate, and Cellulose beads-based membranes for protein adsorption. Special attention was given for preparation, charaterization, adsorption capacity, and molecular electrostatic potential studies calculation. Viscopearl-mini® gives support on the matrix of Chitosan–Alginate membranes instead of cross-linkers usage

Highlights

  • Chitosan and Alginate were used as biopolymers to prepare membranes for protein adsorption

  • The Chitosan, Alginate, and Cellulose biopolymers may have the potential to be used as low-cost raw materials since they represent widely available and environmentally friendly resources [2] that seem attractive for the use, in medicine and

  • Adsorption experiments Contact time is a parameter that determines the rate of Myoglobin removal; the results of initial Myoglobin concentrations for all samples are shown in Figs. 1 and 2

Read more

Summary

Introduction

Chitosan and Alginate were used as biopolymers to prepare membranes for protein adsorption. The Chitosan, Alginate, and Cellulose biopolymers may have the potential to be used as low-cost raw materials since they represent widely available and environmentally friendly resources [2] that seem attractive for the use, in medicine and Murguía‐Flores et al Chemistry Central Journal (2016) 10:26 used as an adsorbent brings some drawbacks such as low surface area or porosity, high cost, and poor chemical and mechanical properties [19, 20]. The conjunction of different biopolymers is an extremely attractive, inexpensive and advantageous method to obtain new structural adsorbent materials [25]. Materials such as fly ash, silica gel, zeolites, lignin, seaweed, wool wastes, agricultural wastes, clay materials, and sugar cane bagasse, among others, have been extensively used for protein removal, due to their sorption sites [15] Physical or chemical modifications have been studied, such as: copolymerization, grafting, or cross-linking processes [2, 21,22,23,24].

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.