Abstract

Mixed self-assembled monolayers (SAMs) are often used as highly tunable substrates for biomedical and biosensing applications. It is well documented, however, that mixed SAMs can be highly disordered at the molecular level and do not pack as closely or homogeneously as single-component SAMs, particularly when the chain lengths and head groups of the SAM thiol components are significantly different. In this study, we explore the impact of SAM structure and mixing ratio (-OH and -CH3 termini) on the weak physisorption behavior of bovine serum albumin (BSA), which adsorbs more readily to hydrophobic, methyl-terminated SAMs. Our results suggest that once the mixture includes 50% or more of the methyl terminus, the mixing ratio alone is a relatively good predictor of adsorption, regardless of the relative chain lengths of the thiols used in the mixture. This trend persists at any mixing ratio for SAMs where methyl- and hydroxyl-terminated groups are the same length or where the hydroxyl-terminated thiol is longer. The only variance observed is at low mixing ratios (<50% methyl-terminated) for a mixed SAM where the methyl-terminated component has a longer chain length. Relative protein adsorption increases on these mixtures, perhaps due to the disordered exposure of the excess alkane backbone. Taken together, however, we do not find significant evidence that varying chain lengths for mixed SAMs prepared on polycrystalline substrates and analyzed in air have an outsized influence on nanoscopic adsorption behavior, despite molecular-level disorder in the SAM itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.