Abstract

The dynamics of protein adsorption at an oil/water interface are examined over time scales ranging from seconds to several hours. The pendant drop technique is used to determine the dynamic interfacial tension of several proteins at the heptane/aqueous buffer interface. The kinetics of adsorption of these proteins are interpreted from tension/log time plots, which often display three distinct regimes. (I) Diffusion and protein interfacial affinity determine the duration of an initial induction period of minimal tension reduction. A comparison of surface pressure profiles at the oil/water and air/water interface reveals the role of interfacial conformational changes in the early stages of adsorption. (II) Continued rearrangement defines the second regime, where the resulting number of interfacial contacts per protein molecule causes a steep tension decline. (III) The final regime occurs upon monolayer coverage, and is attributed to continued relaxation of the adsorbed layer and possible build-up of multilayers. Denaturation of proteins by urea in the bulk phase is shown to affect early regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.