Abstract

The materials covered with poly(ethylene oxide) (PEO) are of use in a wide variety of biomaterials due to blood compatibility of this polymer. The long-term sustainability of its blood compatibility strongly depends on the stability of the PEO layer against aqueous environment. An attempt was made in the present work to immobilize a PEO layer on the silicon surfaces using a silane coupling agent with the aim to improve the waterproof durability of the layer. Several kinds of PEO-modified substrates having a densely and closely packed hydrocarbon layer between substrate and PEO layer were prepared and the stability of the PEO layer against phosphate buffer saline (pH 7.4) was examined in terms of the density of hydrocarbon chains. Those substrates which have a dense hydrophobic chain layer showed a high waterproof durability and a good ability to suppress protein adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.