Abstract

Atomic layer deposition (ALD) offers unique capabilities to fabricate atomically engineered porous materials with precise pore tuning and multi-functionalization for diverse applications like advanced membrane separations towards sustainable energy-water systems. However, current ALD technique is inhibited on most non-polar polymeric membranes due to lack of accessible nucleation sites. Here, we report a facile method to efficiently promote ALD coating on hydrophobic surface of polymeric membranes via novel protein activation/sensitization. As a proof of concept, TiO2 ALD-coated membranes activated by bovine serum albumin exhibit remarkable superhydrophilicity, ultralow underwater crude oil adhesion, and robust tolerance to rigorous environments including acid, alkali, saline, and ethanol. Most importantly, excellent cyclable crude oil-in-water emulsion separation performance can be achieved. The mechanism for activation/sensitization is rooted in reactivity for a particular set of amino acids. Furthermore, the universality of protein-sensitized ALD is demonstrated using common egg white, promising numerous potential usages in biomedical engineering, environmental remediation, low-carbon manufacturing, catalysis, and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.