Abstract

Membrane skeletal proteins play an important role in regulating the shape and function of the human red blood cell. Protein 4.2 interacts with cytoplasmic domain of band 3 (CDB3) and ankyrin for association between the skeleton network and the membrane. The deficiency of protein 4.2 may result in hereditary spherocytosis. In order to explore the molecular mechanism of the linkage of protein 4.2 Komatsu (D175Y) and protein 4.2 Nippon (A142T) with hereditary spherocytosis, a series of protein 4.2-derived mutants were designed and expressed in Escherichia coli. Their interactions with ankyrin and CDB3 were investigated by Far Western blot and pull-down assay in vitro. The results showed that the mutant D175Y of protein 4.2 cannot interact with ankyrin while mutant A142T, just like normal protein 4.2, can bind to ankyrin directly and can associate with CDB3 in the presence of ankyrin. Based on comparing the binding abilities of the protein 4.2 mutants D175F, D175A, D175K and D175Y with ankyrin and CDB3, we suggested that defective binding of protein 4.2 Komatsu to ankyrin is resulted from the charge effect of amino acid residue 175 substitution (D → Y), which leads to significant structural change in protein 4.2 function domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.