Abstract
BackgroundActivation of the cholinergic anti-inflammatory pathway, which relies on the α7nAchR (alpha 7 nicotinic acetylcholine receptor), has been shown to decrease proinflammatory cytokines. This relieves inflammatory responses and improves the prognosis of patients with experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, pancreatitis, arthritis and other inflammatory syndromes. However, whether the cholinergic anti-inflammatory pathway has an effect on acute viral myocarditis has not been investigated. Here, we studied the effects of the cholinergic anti-inflammatory pathway on acute viral myocarditis.Methodology/Principal FindingsIn a coxsackievirus B3 murine myocarditis model (Balb/c), nicotine and methyllycaconitine were used to stimulate and block the cholinergic anti-inflammatory pathway, respectively. Relevant signal pathways were studied to compare their effects on myocarditis, survival rate, histopathological changes, ultrastructural changes, and cytokine levels. Nicotine treatments significantly improved survival rate, attenuated myocardial lesions, and downregulated the expression of TNF-α and IL-6. Methyllycaconitine decreased survival rate, aggravated myocardial lesions, and upregulated the expression of TNF-α and IL-6. In addition, levels of the signaling protein phosphorylated STAT3 were higher in the nicotine group and lower in the methyllycaconitine group compared with the untreated myocarditis group.Conclusions/SignificanceThese results show that nicotine protects mice from CVB3-induced viral myocarditis and that methyllycaconitine aggravates viral myocarditis in mice. Because nicotine is a α7nAchR agonist and methyllycaconitine is a α7nAchR antagonist, we conclude that α7nAchR activation increases the phosphorylation of STAT3, reduces the expression of TNF-α and IL-6, and, ultimately, alleviates viral myocarditis. We also conclude that blocking α7nAchR reduces the phosphorylation of STAT3, increases the expression of TNF-α and IL-6, aggravating viral myocarditis.
Highlights
The survival rate of the CVB3-inoculated mice after 14 days was 45% for those treated with saline, 80% for those treated with nicotine, and 40.0% for those treated with methyllycaconitine
Compared to the myocarditis and methyllycaconitine groups, the survival rate was significantly higher in the nicotine group (Figure 1)
The severity of cellular infiltration and necrosis was lower in the nicotine group and higher in the methyllycaconitine group compared with the myocarditis group (Figure 2, Table 1)
Summary
Recent studies have shown that the vagus nerve can have a positive effect on the prognosis of patients with inflammatory diseases [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]. The nervous system, via an inflammatory reflex of the vagus nerve, can inhibit cytokine release and thereby prevent tissue injury and death. This mechanism of the inflammatory reflex requires the a7nAChR, a ligand-gated ion channel expressed on macrophages, lymphocytes, neurons and other cells. Activation of the cholinergic anti-inflammatory pathway, which relies on the a7nAchR (alpha 7 nicotinic acetylcholine receptor), has been shown to decrease proinflammatory cytokines. This relieves inflammatory responses and improves the prognosis of patients with experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, pancreatitis, arthritis and other inflammatory syndromes. We studied the effects of the cholinergic antiinflammatory pathway on acute viral myocarditis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.