Abstract

We present for the first time direct continuous assay of NO concentration (porphyrinic sensor) in the lung parenchyma of Sprague-Dawley rats in vivo during endotoxemia. Intravenous infusion of lipopolysaccharide (LPS, 2 mg x kg(-1) x min(-1) for 10 minutes) stimulated an acute burst of NO from constitutive NO synthase (NOS) that peaked 10 to 15 minutes after the start of LPS infusion, mirroring a coincident peak drop in arterial pressure. NO concentration declined over the next hour to twice above pre-LPS infusion NO levels, where it remained until the rats died, 5 to 6 hours after LPS infusion. The chronic drop in arterial pressure observed from 70 minutes to 6 hours after the start of LPS infusion was not convincingly mirrored by a chronic increase in NO concentration, even though indirect NO assay (Griess method, assaying NO decay products NO2-/NO3-) showed that NO production was increasing as a result of continuous NO release by inducible NOS. A NOS inhibitor, N(omega)-nitro-L-arginine (L-NNA, 10 mg/kg i.v.) injected 45 minutes before LPS infusion, resulted in sudden death accompanied by macroscopically/microscopically diagnosed symptoms similar to acute respiratory distress syndrome <25 minutes after the start of LPS infusion. Pharmacological analysis of this L-NNA+LPS model by replacing L-NNA with 1-amino-2-hydroxy-guanidine (selective inhibitor of inducible NOS) or by pretreatment with S-nitroso-N-acetyl-penicillamine (NO donor), camonagrel (thromboxane synthase inhibitor), or WEB2170 (platelet-activating factor receptor antagonist) indicated that in the early acute phase of endotoxemia, LPS stimulated the production of cytoprotective NO, cytotoxic thromboxane A2, and platelet-activating factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.