Abstract

BackgroundVentilator-induced lung injury (VILI) is one of the most common complications for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Although p120 is an important protein in the regulation of cell junctions, further mechanisms should be explored for prevention and treatment of VILI.MethodsMouse lung epithelial cells (MLE-12), which were transfected with p120 small interfering (si)RNA, p120 cDNA, wild-type E-cadherin juxtamembrane domain or a K83R mutant juxtamembrane domain (K83R-JMD), were subjected to 20 % cyclic stretches for 2 or 4 h. Furthermore, MLE-12 cells and mice, which were pretreated with the c-Src inhibitor PP2 or RhoA inhibitor Y27632, underwent 20 % cyclic stretches or mechanical stretching, respectively. Moreover, wild-type C57BL/6 mice were transfected with p120 siRNA-liposome complexes before mechanical ventilation. Cell lysates and lung tissues were then analyzed to detect lung injury.Resultscyclic stretches of 20 % actived c-Src, which induced degradation of E-cadherin, p120 and occludin. However, loss of p120 increased the degradation and endocytosis of E-cadherin. Immunoprecipitation and Immunofluorescence results showed a decrease in the association between p120 and E-cadherin, while gap formation increased in p120 siRNA and K83R-JMD groups after 20 % cyclic stretches. Loss of p120 also reduced the occludin level and decreased the association of occludin and ZO-1 by enhancing RhoA activity. However, the altered levels of occludin and E-cadherin were reversed by PP2 or Y27632 treatments compared with the cyclic stretch group. Consistently, the expression, redistribution and disassociation of junction proteins were all restored in the p120 overexpression group after 20 % cyclic stretches. Moreover, the role of p120 in VILI was confirmed by increased wet/dry weigh ratio and enhanced production of cytokines (tumor necrosis factor-α and interleukin-six) in p120-depleted mice under mechanical ventilation.Conclusionsp120 protected against VILI by regulating both adherens and tight junctions. p120 inhibited E-cadherin endocytosis by increasing the association between p120 and juxtamembrane domain of E-cadherin. Furthermore, p120 reduced the degradation of occludin by inhibiting RhoA activity. These findings illustrated further mechanisms of p120 in the prevention of VILI, especially for patients with ALI or ARDS.

Highlights

  • Ventilator-induced lung injury (VILI) is one of the most common complications for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS)

  • Western blotting showed that 20 % cyclic stretches for 2 h induced degradation of E-cadherin, p120 and occludin

  • After exposure of epithelial cells to 20 % cyclic stretches for 4 h, all protein levels were decreased by 60 % (Fig. 1a), which is similar to a previous study [7]

Read more

Summary

Introduction

Ventilator-induced lung injury (VILI) is one of the most common complications for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Mechanical ventilation is an indispensable therapy for patients with acute lung injury and acute respiratory distress syndrome. The primary causes of the increase in alveolar membrane permeability are the destroyed alveolar membrane and the decreased expression of junction proteins. Pulmonary epithelial cells undergo biaxial stretching as the surface area of the basement membrane increases, which can affect the integrity of the alveolar membrane during mechanical ventilation. Mechanical stretching in the form of cyclic stretching induces structural and cytosolic changes in alveolar epithelial cells and causes alveolar epithelial barrier dysfunction and pulmonary hyperpermeability [4,5,6,7]. The disruption of intercellular junctions, which is caused by the decreases in junction protein is a major factor of the increase of epithelial permeability

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call