Abstract
Reactive oxygen species (ROS) play a central role in neuronal pathophysiology and in neurodegenerative disorders. However, recent evidence indicates that these molecules also operate as signaling intermediates in a variety of physiological settings, including cell protection from apoptosis. Data presented here strongly support such a dual role for oxidants in neuronal cell homeostasis. In rat pheocromocytoma cells, cell rescue by the nerve growth factor (NGF) is accompanied by a transient burst of ROS generated in the cytosol by a GTPase-dependent mechanism. Within the NGF signaling cascade, ROS lie upstream and are necessary for activation/phosphorylation of AKT/PKB and of the antiapoptotic transcription factor cAMP-responsive element-binding protein (CREB). Conversely, an increase in mitochondrial oxygen species heralds apoptosis of serum-deprived cells, and these events can be prevented by cell exposure to NGF or by treatment with the mitochondrially targeted antioxidant MitoQ. Importantly, NGF-mediated decrease of mitochondrial ROS is dependent on the transcriptional up-regulation of the manganese superoxide dismutase (MnSOD) by active CREB. These observations therefore outline a circuitry whereby cytosolic redox signaling promotes neuronal cell survival by increasing the mitochondrial antioxidant defenses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.