Abstract
Cold exposure can induce a form of environmental stress. Cold stress (CS) alters homeostasis, results in the creation of reactive oxygen species and leads to alterations in the antioxidant defense system. The caffeic acid phenethyl ester (CAPE), an active component of propolis, has an antioxidant capacity. We investigated the effect of CS on oxidative stress and antioxidant defense system and the possible protective effect of CAPE in rat liver tissue. Twenty-four female Wistar Albino rats were divided into four groups: Control, CAPE-treated, CS, and CAPE-treated CS (CS + CAPE) group. Catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activities and total glutathione (GSH) and malondialdehyde (MDA) levels were measured. In addition, histological changes in liver tissue were examined by light microscopy. SOD, CAT and GSH-Px activities and total GSH level were significantly declined in the CS group. In the CS + CAPE group, the activities of these three enzymes and GSH level significantly raised with regard to the CS group. MDA levels increased in the CS group and decreased in the CS + CAPE group. The tissues of the CS group showed some histopathological changes such as necrosis, hepatocyte degeneration, sinusoidal dilatation, hemorrhage and vascular congestion and dilatation. In the CS + CAPE group, the histopathological evidence of hepatic damage was markedly reduced. Histological parameters were consistent with biochemical parameters. In this study, CS increased oxidative stress in liver tissue. CAPE regulated antioxidant enzymes, inhibited lipid peroxidation and reduced hepatic damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.