Abstract

This paper presents an experimental study of the protective properties of warp-knitted spacer fabrics developed for protecting the human body on impact. A drop-weight impact tester was used to test the fabrics in a hemispherical form to simulate the use of impact protectors in real life. The study consists of two parts. The first part, presented in the current paper, focuses on the impact behavior of a typical spacer fabric impacted at different levels of energy. The analysis includes the impact process and the energy absorption and force attenuation properties of the spacer fabric. Frequency domain analysis is also used, to identify the different deformation and damage modes of the fabric under various levels of impact energy. The results show that the impact behavior of the fabric under impact in the hemispherical form is different from that in the planar form. The results also indicate that the curvature of the fabric can reduce energy absorption during the impact process and therefore reduce the force attenuation properties of the spacer fabric. This study provides a better understanding of the protective properties of spacer fabrics. The effect of fabric structural parameters and lamination on the protective properties of spacer fabrics under impact will be presented in Part II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.