Abstract

Quercetin compounds have antioxidant, anti-inflammatory and anticancer pharmacological functions. Long-term exposure to acrylamide (AA) can cause liver injury and endanger human health. However, whether quercetin compounds can attenuate AA-induced liver injury and the specific mechanism are not clear. Here, we studied the mechanism and structure-activity relationship of quercetin compounds in reducing AA-induced hepatotoxicity in vivo and in vitro. In vivo studies found that quercetin-like compounds protect against AA-induced liver injury by reducing oxidative stress levels, activating the Akt/mTOR signaling pathway to attenuate autophagy, and improving mitochondrial apoptosis and endoplasmic reticulum stress-mediated apoptosis. In vitro studies found that quercetin compounds protected HepG2 cells from AA by attenuating the activation of AA-induced autophagy, lowering reactive oxygen species (ROS) levels by exerting antioxidant effects and thus attenuating oxidative stress, increasing mitochondrial membrane potential (MMP), and improving apoptosis-related proteins, thus attenuating AA-induced apoptosis. Furthermore, the conformational differences between quercetin compounds correlated with their protective capacity against AA-induced hepatotoxicity, with quercetin showing the best protective capacity due to its strongest antioxidant activity. In conclusion, quercetin compounds can protect against AA-induced liver injury through multiple pathways of oxidative stress, autophagy and apoptosis, and their protective capacity correlates with antioxidant activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call