Abstract

The purpose of this investigation was to determine the effects of varying facemask reinforcement and visor tint on peripheral visuomotor abilities in collegiate football players. Division I NCAA football players (n = 14) completed two peripheral visuomotor experiments: (1) Varying facemask reinforcement, (2) Varying visor tinting. In experiment 1, participants were tested under the following conditions: baseline (no helmet; BL), helmet + light (HL), helmet + medium (HM), helmet + heavy (HH), and helmet + extra heavy (HXH) reinforced facemasks. In experiment 2, participants were tested under the following conditions: baseline (no helmet; BL), helmet only (HO), helmet + clear (HCV), helmet + smoke-tinted (HSV), and helmet + mirror-tinted (HMV) visors. For each condition, a 60 s peripheral visuomotor test was completed on a Dynavision D2 visuomotor board. For experiment 1, the BL peripheral reaction time (PRT) was faster than all facemask conditions (p < 0.05). Furthermore, PRT was impaired with the HXH compared to HL (p < 0.001), HM (p < 0.001), and HH (p = 0.001). Both HH and HXH resulted in the potentiation of PRT impairments in the outermost and inferior peripheral visual areas (p < 0.05). In experiment 2, BL PRT was faster than all helmeted conditions (p < 0.05). Additionally, PRT was slower in HSV (p = 0.013) and HMV (p < 0.001) conditions compared to HO. HMV resulted in slower PRT in all peripheral areas (p < 0.05) while PRT was impaired only in outer areas for HSV (p < 0.05). Wearing protective football headgear impairs peripheral visuomotor ability. Lighter reinforced facemasks and clear visors do not appear to exacerbate impairment. However, heavier reinforced facemasks and tinted visors further decrease visuomotor performance in outer and inferior visual areas, indicating a potential need for considerations of on-field player performance and safety.

Highlights

  • The evolution of protective headgear in American football has been dramatic since the development of the sport

  • Smoke- and mirror-tinted visors worsen the peripheral reactive ability beyond that of solely wearing a helmet, and this appears to be most pronounced in farperipheral areas

  • This is the first investigation to show that facemasks and visors differentially affect peripheral visuomotor ability

Read more

Summary

Introduction

The evolution of protective headgear in American football has been dramatic since the development of the sport. Football helmets became mandatory during competition for the first time at both professional and collegiate levels around the 1940s to increase player safety and attempt to prevent head/neck injuries [3]. While helmets are primarily designed to prevent head and neck injury, football poses risks for orbital injury or trauma. Since clear sight and reactive ability during gameplay is crucial for peak performance and safety [7], understanding how modern protective football headgear influences players’ ability to respond appropriately to visual stimuli surrounding them could have important implications for players’ safety and equipment rules

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call