Abstract

Toxoplasma gondii can infect a wide range of warm-blooded animals, causing a global toxoplasmosis zoonotic epidemic. Surface antigen 1 (SAG1) protein is expressed at the proliferative tachyzoite stage, whereas matrix antigen 1 (MAG1) is expressed at the bradyzoite and tachyzoite stages. These two proteins were found to perform protective roles in previous studies; however, their synergetic protective efficacy as a DNA vaccine against toxoplasmosis has not been clarified. In this study, we constructed recombinant pcDNA3.1( +)-TgMAG1 (pMAG1), pcDNA3.1( +)-TgSAG1 (pSAG1), and pcDNA3.1( +)-TgMAG1-TgSAG1 (pMAG1-SAG1) plasmids and administered them intramuscularly to immunize mice. The levels of anti-T. gondii IgG in serum and cytokines, such as Interleukin (IL)-4, IL-10, and Interferon (IFN)-γ, in splenocytes were measured using ELISA and the respective culture supernatants. Lethal doses of T. gondii (type I) RH strain tachyzoites were administered to immunized mice, and mortality was assessed. Conversely, mice infected with low doses of tachyzoites were monitored to determine their survival rates, and parasite burden analyses of the brains and livers were conducted. The bivalent TgMAG1 and TgSAG1 DNA vaccines exhibited excellent protective immunity against toxoplasmosis in mice, with higher serum IgG and splenocyte IFN-γ release levels, longer survival days, and reduced parasite burden in the brain and liver tissues (p < 0.05). These findings provide a new perspective for the development of T. gondii vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call