Abstract

Photobacterium damselae subsp. piscicida (Phdp) is the causative agent of photobacteriosis in marine fish and is responsible for huge losses to marine aquaculture worldwide. Efforts have been made to develop a vaccine against this disease. Heat-shock proteins (HSPs) are a family of proteins that are ubiquitous in cellular life. Bacteria produce elevated levels of HSPs as a survival strategy when exposed to stressful environments in a host during infection. This group of proteins are also important antigens that can induce both humoral and cellular immune responses. In this study, four HSPs of Phdp, HSP90, HSP33, HSP70, and DnaJ, were selected for cloning and recombinant expression. Western blotting with rabbit anti-Phdp helped identify rHSP70 and rHSP33 as immunogenic proteins. Asian seabass (Lates calcarifer) immunised with rHSP90, rHSP33, rHSP70, and rDnaJ showed 48.28%, 62.07%, 51.72%, and 31.03% relative percent survival, respectively, after being challenged with Phdp strain AOD105021. High expression levels of immune-related genes and high antibody titres were observed in the rHSP33 group, and the sera of this group also exhibited a high level of bactericidal activity against Phdp. Collectively, our results suggest that HSP33 is a potential candidate for vaccine development against Phdp infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call