Abstract

ABSTRACT Human metapneumovirus (HMPV) is a leading cause of acute respiratory tract infections in infants and children. Currently, no approved HMPV vaccine is available. We developed a novel recombinant influenza virus, which carried partial HMPV F protein (HMPV-F) epitopes, utilizing reverse genetics. The novel single-stranded RNA virus, termed rFLU-HMPV/F-NA, was synthesized in the neuraminidase (NA) fragment of influenza virus A/PuertoRico/8/34 (PR8). The morphological characteristics of rFLU-HMPV/F-NA were consistent with the wild-type flu virus. The virus could passage in specific pathogen-free (SPF) chicken embryos for at least five consecutive generations with haemagglutinin (HA) titres of 28–9 or 8–9LogTCID50/mL. BALB/c mice were intranasally immunized at 21-day intervals with 104 TCID50 (low-dose group) or 106 TCID50 (high-dose group) rFLU-HMPV/F-NA, and PBS or PR8 vaccine was used for the control group. rFLU-HMPV/F-NA induced robust humoral, mucosal, and cellular immune responses in vivo in a dose-dependent manner. More importantly, wt clinical HMPV isolate challenge studies showed that rFLU-HMPV/F-NA provided significant immune protection against HMPV infection compared to the PBS or PR8 vaccine control group, as shown by improved histopathological changes and reduced viral titres in the lungs of immunized mice post-challenge. These findings demonstrate that rFLU-HMPV/F-NA has potential as a promising HMPV candidate vaccine and warrants further investigation into its control of HMPV infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call