Abstract

Previous studies have shown that dietary micronutrient vanadium can protect neoplastic development induced by chemical carcinogens. Current investigation is an attempt to evaluate the role of vanadium (4.27 μmol/l) in inhibiting 1,2 dimethyhydrazine (DMH) (20 mg/kg body weight) induced rat colon carcinogenesis. We investigated the effect of vanadium against the formation of DMH-induced O 6-methylguanine ( O 6-Meg) DNA adduct, a potent cytotoxic and mutagenic agent for colon cancer. Supplementation of vanadium significantly reduced the hepatic ( P < 0.05), and colonic (at three sequential time points; ANOVA, F = 4.96, P < 0.05) O 6-Meg DNA adduct levels in rats, indicating vanadium's potency in limiting the initiation event of colon carcinogenesis. Removal of initiated and damaged precancerous cells by apoptosis can prevent tumorigenesis and further malignancy . DNA fragmentation study revealed the vanadium-mediated apoptotic induction in colon tumors. The increased value of apoptotic index (AI) (62.27%; P < 0.01) in subsequent TUNEL assay further confirmed the apoptosis induction by vanadium. This paralleled the nuclear immunoexpression of p53. A significant positive correlation between p53 immunoexpression and AI ( P = 0.0026, r = 0.83, r 2 = 0.69) links its association with vanadium-mediated apoptotic induction. Vanadium treatment also abated the mRNA expression of iNOS (54.03%), reflecting its protective effect against nitric oxide-mediated genotoxicity and colon tumorigenesis. These studies cumulatively provide strong evidence for the inhibitory actions of vanadium against DMH-induced genotoxicity and carcinogenesis in rat colon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call