Abstract
In this study, the effects of tyrosol were investigated in DSS-induced experimental ulcerative colitis model. For this purpose, rats were divided into five groups of seven rats in each: control group, colitis group (DSS-4%), tyrosol group (tyrosol 20mg/kg), sulfasalazine (sulfasalazine+DSS 100mg/kg), and treatment group (tyrosol+DSS 20mg/kg). In the study, the active substances were administered to all animals for a period of 21days. At the end of the study, malondialdehyde (MDA) levels increased (p < 0.001); GSH level (p < 0.05) along with GSH.Px (p < 0.01) and CAT (p < 0.001) activities decreased in the DSS-induced colitis group. However, with the administration of tyrosol, MDA and GSH levels along with GSH.Px and CAT activities came to the same levels as the control group. In the colitis group, an increase occurred in IL-6, COX-2, and NF-κB parameters, which created a significant difference compared to the control group (p < 0.001). Similarly, TNF-α levels also significantly increased with the administration of DSS (p < 0.05) which created a significant difference compared to the control group, while there was no difference among the other groups. As for the Nrf-2 data, it decreased with the administration of DSS which created a significant difference compared to the control group (p < 0.05), while there was no difference in other groups. In the colitis-induced group, IL-6, COX-2, and NF-κB gene expression levels also similarly increased but returned to the normal levels with the administration of tyrosol. In the histopathological scoring, the negativity that increased with the administration of DSS returned to the normal levels with the administration of tyrosol+DSS. In conclusion, according to the data obtained, tyrosol fixed the destruction picture in the DSS-induced colitis model, giving rise to thought that it has a protective effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.