Abstract
Ischemia-reperfusion (IR) injury remains a pivotal contributor to myocardial damage following acute coronary events and revascularization procedures. Phosphoinositide 3-kinase (PI3K), a key mediator of cell survival signaling, plays a central role in regulating inflammatory responses and cell death mechanisms. Trans-chalcone (Tch), a natural compound known for its anti-inflammatory activities, has shown promise in various disease models. The aim of the current study was to investigate the potential protective effects of Tch against myocardial injury induced by ischemia and reperfusion challenges by targeting the PI3K-inflammasome interaction. Experimental models utilizing male rats subjected to an in vivo model of IR injury and myocardial infarction were employed. Administration of Tch (100 μg/kg, intraperitoneally) significantly reduced myocardial injury, as indicated by limited infarct size and decreased levels of the myocardial enzyme troponin. Mechanistically, Tch upregulated PI3K expression, thereby inhibiting the activity of the NOD-like receptor protein 3 inflammasome followed by the activation of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. Moreover, it mitigated oxidative stress and suppressed vascular-intercellular adhesion molecules, contributing to its cardioprotective effects. The PI3K/Akt pathway inhibitor LY294002 considerably attenuated the beneficial effects of Tch. These findings highlight the therapeutic potential of Tch in ameliorating myocardial injury associated with IR insults through its modulation of the PI3K/Akt-inflammasome axis. The multifaceted mechanisms underlying its protective effects signify Tch as a promising candidate for further exploration in developing targeted therapies aimed at mitigating ischemic heart injury and improving clinical outcomes in cardiovascular diseases characterized by IR injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.