Abstract

Cytokines and reactive oxygen species are inflammatory mediators that lead to increased sensitivity to painful stimuli, and their inhibition represents a therapeutic approach in controlling acute and chronic pain. The water-soluble flavonone hesperidin methyl chalcone (HMC) is used in the treatment of venous diseases, but its bioactivity as anti-inflammatory and analgesic is poorly understood. The present study evaluated the protective effects of HMC in widely used mouse models of acute and prolonged inflammation and pain. Male Swiss mice were treated with HMC (3–100 or 30mg/kg, intraperitoneally) or vehicle (saline) 1h before inflammatory stimuli. In overt pain-like behavior tests, HMC inhibited acetic acid- and phenyl-p-benzoquinone-induced writhing, and capsaicin-, Complete Freund’s Adjuvant (CFA)- and formalin-induced paw flinching and licking. HMC also inhibited carrageenan-, capsaicin- and CFA-induced mechanical and thermal hyperalgesia. Mechanistically, HMC inhibited carrageenan-induced cytokine (TNF-α, IL-1β, IL-6, and IL-10) production, oxidative stress and NF-κB activation. Furthermore, HMC did not cause gastric or hepatic injury in a 7days treatment protocol. Thus, this is the first report that HMC reduces inflammation and inflammatory pain by targeting TRPV1 (transient receptor potential vanilloid type 1) receptor activity, oxidative stress, cytokine production, and NF-κB activity, which suggests its potential applicability in inflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call