Abstract

Accumulating evidence has shown that tauroursodeoxycholic acid (TUDCA) is neuroprotective in different animal models of neurological diseases. However, whether TGR5 agonist TUDCA can improve lipopolysaccharide (LPS)-induced cognitive impairment in mice is less clear. Using a model of cognitive impairment with LPS (2.0 μg) we investigated the effects of TUDCA (200 or 400 μg) on cognitive dysfunction and neurotoxicity in mice. Both Morris water maze and Y-maze avoidance tests showed that TUDCA treatment significantly alleviated LPS-induced behavioral impairments. More importantly, we found that TUDCA treatment reversed TGR5 down-regulation, prevented neuroinflammation via inhibiting NF-κB signaling in the hippocampus of LPS-treated mice. Additionally, TUDCA treatment decreased LPS-induced apoptosis through decreasing TUNEL-positive cells and the overexpression of caspase-3, increasing the ratio of Bcl-2/Bax. TUDCA treatment also ameliorated synaptic plasticity impairments by increasing the ratio of mBDNF/proBDNF, the number of dendritic spines and the expression of synapse-associated proteins in the hippocampus. Our results indicated that TUDCA can improve cognitive impairment and neurotoxicity induced by LPS in mice, which is involved in TGR5-mediated NF-κB signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call