Abstract

The organ toxicity of doxorubicin (DOX), an anthracycline antineoplastic agent, narrows the therapeutic window despite its clinical usefulness. In the present study, we determined whether taurine protected against DOX-induced hepatic injury, and explored the molecular mechanisms underlying the suppressive effects of taurine in terms of alterations in oxidative stress and apoptotic responses. DOX-induced body weight loss was completely suppressed by taurine treatment. Elevations in the serum activity levels of lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase by DOX were also dose-dependently attenuated by a concurrent treatment with taurine. Superoxide dismutase activity and reduced glutathione content in the liver were decreased following the administration of DOX, whereas these changes were suppressed when 10 mg/kg taurine was given in combination with DOX. Taurine attenuated the increased expression of mRNAs for Fas and Bax after DOX exposure. Furthermore, the formation of cleaved caspase-3 protein in the group given DOX with taurine was lower than that in the group treated with DOX alone. Our results suggest that taurine can protect against DOX-induced acute hepatic damage, the underlying mechanism of which is attributable to the suppression of oxidative stress and apoptotic responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call