Abstract

Pumpkin polysaccharides (PPe) exhibit multiple bioactive properties, including the ability to reduce blood sugar and lipids. Our prior investigation discovered that hydrolysates (PPe-s) derived from PPe demonstrated stronger antioxidant capabilities than PPe. The objective of the current study was to explore the potential mechanism of PPe-s, utilizing Caenorhabditis elegans and MIN6 cells as models. The results of this investigation revealed that PPe-s exhibited strong scavenging ability towards ABTS+ and OH·in vitro. Additionally, PPe-s extended the lifespan of C. elegans under hydrogen peroxide stress (p < 0.05) by upregulating the mRNA expression of daf-16, sod-1, sod-3, and skn-1 (all >1.43-fold, p < 0.05). Furthermore, PPe-s enhanced the proliferation activity of MIN6 cells, induced by alloxan, increased insulin secretion and cAMP levels, and excreted intracellular excessive Ca2+ in a concentration-dependent manner. Our study demonstrated that PPe-s upregulated the expression levels of antioxidative-related genes and augmented the antioxidant defense system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.