Abstract

Among luminal types of breast cancers, ER + breast cancer is the most frequently diagnosed cancer globally. ER + breast cancer is commonly treated with SERM drugs that block ER to prevent ER-mediated cancerous growth. Our previous computational screening found pelargonidin (PG) can inhibit ER-signaling with potent bioactivity and satisfactory toxicological features. The present study explored the anti-tumoral prospect of PG against DMBA-induced ER + murine mammary carcinogenesis. The female BALB/c mice were divided into control (A) and DMBA-exposed groups. Following tumor appearance, the DMBA-exposed group was divided into five groups: tumor control, PG-treated (Groups P25, P50, and P100), and tamoxifen-treated (TAM). The results indicated that PG-treatment dose-dependently reduced the mean tumor volume, reinstated body weight loss, and enhanced the percentage survival of tumor-bearing mice. In addition, we recorded a significant reduction in LPO, total cholesterol, and triglycerides and a surge in the activity of antioxidases and phase II detoxifying enzymes in PG-treated animals. PG also dose-dependently increased the serum level of unbound estradiol, an indicator of competitive ER binding by an ER agonist/antagonist. These data suggest that pelargonidin has potent anticancer potential against the animal model of ER + breast cancer that matches the efficiency of tamoxifen with conceivably fewer side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.