Abstract

Poly (ADP-ribose) polymerase 1 (PARP1)-dependent cell death in the retinal pigment epithelium (RPE) is implicated in dry age-related macular degeneration (AMD). Although PARP1 inhibitors are available for treating dry AMD, their delivery route is not ideal for patients. The aim of this study was to test the efficacy of a novel PARP1-inhibitory compound (PIC) in vitro and in vivo. This study presents PIC, a novel small molecule, with superior efficacy to PARP1 inhibitors in the market. PIC demonstrated a distinctive inhibitory profile against PARP isotypes than the FDA-approved PARP1 inhibitors. PIC inhibited PARP1 activation at an IC50 of 0.41 ± 0.15 nM in an enzyme-based assay in vitro and at IC50 and EC50 in ARPE-19 cells of 0.11 ± 0.02 nM and 0.22 ± 0.02 nM, respectively, upon H2O2 insult. PIC also moderated mitochondrial fission and depolarization and maintained cellular energy levels under oxidative stress in ARPE-19 cells. Furthermore, PIC demonstrated good corneal penetration in a rat model, presenting PIC as a promising candidate for eye drop therapeutics for dry AMD. When PIC was administered as an eye drop formulation, RPE morphology was preserved, maintaining the thickness of the outer nuclear layers under sodium iodate (SI) treatment in rats. In SI-treated rabbits, eye drop administration of PIC also retained the structural and functional integrity when analyzed using funduscopy and electroretinogram. Collectively, our data portray PIC as an attractive treatment measure for dry AMD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.