Abstract
Liver fibrosis is a public health burden that is highly associated with morbidity and mortality. Therefore, this study aims to explore the anti-fibrotic effects of low dose of paclitaxel (PTX) against thioacetamide (TAA)-induced liver fibrosis in rats and the possible mechanisms involved. TAA was administered at a dose of 200 mg/kg twice weekly for 6 weeks in rats to induce liver fibrosis similar to that in humans. Liver dysfunction was shown by increased alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transferase, along with histopathological changes. Liver fibrosis was confirmed by Masson's Trichome staining, increased collagen content, and elevated α-smooth muscle actin (α-SMA) protein expression. In addition, TAA induced liver apoptosis as indicated by the increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in liver tissues. This study demonstrated that the administration of PTX (0.3 mg/kg/i.p.) three times a week for 6 weeks significantly alleviated functional and biochemical changes induced by TAA in addition to improving the liver architecture. PTX attenuated liver fibrosis as reflected by the decreased collagen content and α-SMA protein expression. Additionally, PTX attenuated liver apoptosis as indicated by the decreased TUNEL-positive cells. Moreover, PTX prevented TAA-induced elevation of transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and tissue inhibitor of metalloproteinase 1 (TIMP-1) levels in liver tissues. These findings suggest that the low dose of PTX prevented TAA-induced liver fibrosis in rats, possibly byinhibiting the expression of TGF-β1 and PDGF-BB and subsequently suppressing the apoptosis and the expression of TIMP-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.