Abstract
Benzo[a]pyrene (B[a]P) is an ubiquitous environmental pollutant that is generated during combustion of fossil fuels. We examine the effect of noradrenaline (NA) on B[a]P-induced neurotoxicity in brain tumor cell lines like neuroblastoma (Neuro2a) and glioma (C6). We pre-treated tumor cells with NA for 6h, followed by addition of B[a]P for additional 24h. Cell viability was measured using trypan blue dye-exclusion assay and comet assay was performed to measure DNA damage. Cell cycle status was analyzed using flow cytometry and oxidative DNA damage (8-oxodG) production was examined by immunostaining. The intracellular Ca2+ concentration was analyzed using Fura-2AM. Our results showed viability of Neuro2a and C6 cells declined (24% and 20%) in B[a]P-treated groups. However, pre-treating with NA increased viability of cells by reducing percentage of cell death in both. Furthermore, B[a]P-induced deregulation of cell cycle (G2/M and S phase cell arrest) was significantly restored by pre-treatment with NA in Neuro2a cells as compared to C6 cells. We further observed increased 8-oxodG production in B[a]P-treated cells; however, NA pre-treatment significantly (p < 0.05) reduced the 8-oxodG production in Neuro2a, while C6 cells were less affected possibly due to better protective machinery. B[a]P-induced intracellular Ca2+ influx was significantly reduced in both the cell lines due to co-treatment of NA possibly by reducing Ca2+ influx. NA protects brain tumor cells against B[a]P-induced neurotoxicity may be by decreasing percentage of G2 cell arrest, oxidative DNA damage, and reducing intracellular Ca2+ influx. These findings suggested that NA may be considered as a natural potential protective agent against B[a]P-induced neurotoxicity. Graphical abstract Graphical abstract showing differential protective mechanism of NA against B[a]P-induced toxicity through antioxidant mechanism maintaining homeostasis for oxidative stress in Neuro2a and C6 cell lines. The schematic graph showed the biological significance of the NA that regulates the induction of metabolic processes of cell cycle after exposure to the environmental pollutants. B[a]P increases the intracellular levels of Ca2+, but also induces damage to cellular molecules including DNA causing cell cycle arrest. The B[a]P-induced DNA damage due to base lesions generated in the genome, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is one of the most abundant because of guanine's lowest redox potential among DNA bases through intracellular calcium homoeostasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.