Abstract

ABSTRACT Purpose: To investigate the protective effects of nicotinamide riboside (NR) on oxidative damage in hydrogen peroxide (H2O2)-exposed human lens epithelial cell lines (SRA01/04) and the possible mechanisms underlying its protective effects. Materials and methods: SRA01/04 cells were divided into three groups: the control (CON) group, model (H2O2) group and treatment (NR+H2O2) group. Superoxide dismutase (SOD), catalase (CAT) and total glutathione (GSH) levels were detected to evaluate oxidative damage induced by different concentrations of H2O2 in SRA01/04 cells. After SRA01/04 cells were treated with NR and/or H2O2, cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Hoechst staining, cell apoptosis was analysed using flow cytometry, reactive oxygen species (ROS) were measured with the DCFH-DA probe, and mitochondria were stained with MitoTracker to measure the mitochondrial membrane potential (MMP). In addition, western blotting was performed to detect the levels of proteins associated with apoptosis and related signalling pathways. Results: H2O2 induced oxidative damage in SRA01/04 cells by inhibiting the activity of SOD and CAT and reducing total GSH levels. Treatment of SRA01/04 cells with NR significantly increased cell viability and reduced cell apoptosis and ROS generation, whereas SOD and CAT activities and total GSH and MMP levels were improved by the NR treatment in an H2O2-exposed cell model. Furthermore, NR significantly inhibited the activation of the MAPK pathway but promoted activation of the JAK2/Stat3 pathway compared with the model group. Conclusions: NR may alleviate oxidative damage by targeting the MAPK and JAK2/Stat3 pathways in H2O2-treated SRA01/04 cells. NR may represent anovel drug for preventing or treating cataracts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.