Abstract

The purpose of the present study was to evaluate the nephro-protective potential of N-acetylcysteine against hyperoxaluria-induced renal mitochondrial dysfunction in rats. Nine days dosing of 0.4 % ethylene glycol +1 % ammonium chloride, developed hyperoxaluria in male wistar rats which resulted in renal injury and dysfunction as supported by increased level of urinary lactate dehydrogenase, calcium, and decreased creatinine clearance. Mitochondrial oxidative strain in hyperoxaluric animals was evident by decreased levels of superoxide dismutase, glutathione peroxidase, glutathione reductase, reduced glutathione, and an increased lipid peroxidation. Declined activities of respiratory chain enzymes and tricarboxylic acid cycle enzymes showed mitochondrial dysfunction in hyperoxaluric animals. N-acetylcysteine (50 mg/kg, i.p.), by virtue of its -SH reviving power, was able to increase the glutathione levels and thus decrease the oxidative stress in renal mitochondria. Hence, mitochondrial damage is, evidently, an essential event in ethylene glycol-induced hyperoxaluria and N-acetylcysteine presented itself as a safe and effective remedy in combating nephrolithiasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call