Abstract

Sodium nitroprusside (SNP) is an antihypertensive drug with proven dose-dependent toxic effects attributed mainly to the production of cyanide but also excesive nitric oxide (NO) and derived reactive species. The present study evaluated whether melatonin administration would have time-dependent protective effect against SNP−induced toxicity. Male Swiss mice were used in this study. Control mice were treated with 0.9% NaCl; the second group was injected with 10 mg melatonin (MEL)/kg body weight (b.w.); the third group was given SNP at the dose of 3,6 mg/kg b.w.; the fourth group received both MEL and SNP at the same doses. In homogenates of brain, liver and kidneys, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were estimated after 3, 6 and 24 h of drugs administration. The concentration of reduced glutathione (GSH) was also evaluated in the blood, brain, liver and kidneys of mice at the same time intervals. In animals receiving MEL, the highest levels of GSH were observed in all the organs as compared to the control after 3, 6 h. Meanwhile, SNP decreased GSH concentration in the blood, brain, liver and kidneys in all time intervals. Administration of MEL in combination with SNP increased the GSH levels in all organs, as compared to the administration of SNP alone; this effect was observed after 3, 6 and 24 h. The activity of SOD, CAT and GSH-Px in the MEL-treated group increased after 3 h in all the organs, while in liver and kidney the increase was also observed after 6 h. Conversely, the SNP intoxication caused a decrease of the activity of enzymes in the tested organs in all intervals, while administration of MEL + SNP resulted in increased activities of SOD, CAT and GSH-Px in all the organs after 3 h and 6 h. The investigation carried out in the present study provide new data to add to the study of antioxidant properties of MEL and SNP-induced oxidative stress with regard to time-dependent properties in different types of tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call