Abstract

Obesity has become a global public health problem associated with metabolic dysfunction and chronic disorders. It has been shown that the risk of obesity and the DNA methylation profiles of the offspring can be affected by maternal nutrition, such as high-fat diet (HFD) consumption. The aim of this study was to investigate whether metabolic dysregulation and physiological abnormalities in offspring caused by maternal HFD can be alleviated by the treatment of methyl donors during pregnancy and lactation of dams. Female C57BL/6 mice were assigned to specific groups and given different nutrients (control diet, Control+Met, HFD and HFD+Met) throughout gestation and lactation. Offspring of each group were weaned onto a control diet at 3 weeks of age. Physiological (weight gain and adipose composition) and metabolic (plasma biochemical analyses) outcomes were assessed in male and female adult offspring. Expression and DNA methylation profiles of obesogenic-related genes including PPAR γ, fatty acid synthase, leptin and adiponectin were also detected in visceral fat of offspring. The results showed that dietary supplementation with methyl donors can prevent the adverse effects of maternal HFD on offspring. Changes in the expression and DNA methylation of obesogenic-related genes indicated that epigenetic regulation may contribute to the effects of maternal dietary factors on offspring outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call