Abstract

Vascular remodeling is essential for patients with cerebral ischemic stroke (CIS). Our previous study proved that low-intensity pulsed ultrasound (LIPUS) could increase cortical hemodynamics. However, the effects and mechanisms of LIPUS on cerebral vascular remodeling after CIS are still unknown. In this study, we applied LIPUS to the mouse brain at 0.5h after distal middle cerebral artery occlusion (dMCAO) and subsequently daily for a stimulation time of 30min. Results showed that compared with the dMCAO group, LIPUS markedly increased cerebral blood flow (CBF), reduced brain swelling, and improved functional recovery at day 3 after CIS. LIPUS promoted leptomeningeal vasculature remodeling, enlarged vascular diameter, and increased the average vessel length and density at day 3 after CIS. Proteomic analysis highlighted that LIPUS mainly participated in the regulation of actin cytoskeleton pathway. Rho kinase 1 (ROCK1) was downregulated by LIPUS and participated in regulation of actin cytoskeleton. Subsequently, we verified that ROCK1 was mainly expressed in pericytes. Furthermore, we demonstrated that LIPUS inhibited ROCK1/p-MLC2 signaling pathway after CIS, which had positive effects on vascular remodeling and cerebral blood circulation. In conclusion, our preliminary study revealed the vascular remodeling effects and mechanism of LIPUS in CIS, provided evidence for potential clinical application of LIPUS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.