Abstract

BackgroundLiuwei dihuang (LWDH), a widely used traditional Chinese herbal medicine, has been noticed for its potential on the improvement of diabetic complications including diabetic nephropathy and diabetic encephalopathy. However, whether LWDH can improve the effects of diabetic skeletal muscle atrophy has not yet been reported. PurposeThe present study aimed to investigate the protective effects and mechanisms of the water extract of Liuwei dihuang (LWDH-WE) on skeletal muscle in cellular and animal models of diabetic muscle atrophy. Study designThe muscle protective effects of LWDH-WE on diabetic muscle atrophy and weakness were examined in methylglyoxal (MG)-treated C2C12 myotubes and streptozotocin (STZ)-treated C57BL/6 mice, respectively. MethodsC2C12 myoblasts were differentiated by differentiation medium to form myotube structures. C2C12 myotubes were pre-treated with LWDH-WE 1 h before MG treatment. Diabetic mice were induced by single intraperitoneal injection of STZ (150 mg/kg) in C57BL/6 mice. Cell viability was determined by MTT and LDH assays. Protein expressions were detected by western blots. Morphological changes of cells were observed by an inverted microscope. Mitochondria membrane potential and reactive oxygen species (ROS) production were measured by flow cytometry. Muscle strength was evaluated by measuring grip strength of mice. ResultsIn C2C12 myotubes, LWDH-WE attenuated MG-induced cellular death and oxidative damage accompanied with improving mitochondrial membrane potential, inhibiting NADPH oxidase (Nox) activation, and ROS production. Moreover, LWDH-WE could attenuate MG-induced atrophy of C2C12 myotubes accompanied with regulating protein synthesis (IGF-1R, Akt, mTOR) and protein degradation (FoxO3a, atrogin-1, MuRF-1) signals. In STZ-induced diabetic mice, LWDH-WE improved body weight and skeletal muscle mass of mice. LWDH-WE also enhanced muscle strength of STZ-induced diabetic mice. Furthermore, LWDH-WE enhanced the improvement of insulin on gastrocnemius muscle mass and grip strength in STZ-treated mice. ConclusionLWDH-WE possesses skeletal muscle protection via reducing oxidative damage and regulating protein synthesis and degradation pathways in MG-induced atrophy of C2C12 myotubes. We also reveal the novel protection of LWDH-WE against STZ-induced reduction of muscle mass and muscle strength in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.