Abstract
Ligustroflavone is one major compound contained in active fraction from Fructus Ligustri Lucidi (the fruit of Ligustrum lucidum), which could regulate parathyroid hormone (PTH) levels and improve calcium balance by acting on calcium-sensing receptors (CaSR). This study aimed to explore the potency of ligustroflavone as a CaSR antagonist and its protective effects against diabetic osteoporosis in mice. LF interacted well with the allosteric site of CaSR shown by molecular docking analysis, increased PTH release of primary parathyroid gland cells and suppressed extracellular calcium influx in HEK-293 cells. The serum level of PTH attained peak value at 2 h and maintained high during the period of 1 h and 3 h than that before treatment in mice after a single dose of LF. Treatment of diabetic mice with LF inhibited the decrease in calcium level of serum and bone and the enhancement in urinary calcium excretion as well as elevated circulating PTH levels. Trabecular bone mineral density and micro-architecture were markedly improved in diabetic mice upon to LF treatment for 8 weeks. LF reduced CaSR mRNA and protein expression in the kidneys of diabetic mice. Taken together, ligustroflavone could transiently increase PTH level and regulate calcium metabolism as well as prevent osteoporosis in diabetic mice, suggesting that ligustroflavone might be an effective antagonist on CaSR.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.