Abstract

Occupational internal contamination with depleted uranium (DU) compounds can induce radiological and chemical toxicity, and an effective and specific uranium-chelating agent for clinical use is urgently needed. The purpose of this study was to investigate whether a series of synthesized water-soluble metal-ion-imprinted chitooligosaccharides can be used as uranium-specific chelating agents, because the chitooligosaccharides have excellent heavy metal ion chelation property and the ion-imprinting technology can improve the selective recognition of template ions. DU-poisoned human renal proximal tubule epithelium cells (human kidney 2 cells, HK-2) were used to assess the detoxification of these chitooligosaccharides. The DU-chelating capacity and selectivity of the chitooligosaccharides were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Cell viability, cellular accumulation of DU, membrane damage, DNA damage, and morphological changes in the cellular ultrastructure were examined to assess the detoxification of these chitooligosaccharides. The results showed that the Cu 2+-imprinted chitooligosaccharides, especially the Cu 2+-imprinted glutaraldehyde-crosslinked carboxymethyl chitooligosaccharide (Cu-Glu-CMC), chelated DU effectively and specifically, and significantly reduced the loss of cell viability induced by DU and reduced cellular accumulation of DU in a dose-dependent manner, owing to their chelation of DU outside cells and their prevention of DU internalization. The ultrastructure observation clearly showed that Cu-Glu-CMC-chelated-DU precipitates, mostly outside cells, were grouped in significantly larger clusters, and they barely entered the cells by endocytosis or in any other way. Treatment with Cu-Glu-CMC also increased the activity of antioxidant enzymes, and reduced membrane damage and DNA damage induced by DU oxidant injury. Cu-Glu-CMC was more effective than the positive control drug, diethylenetriaminepentaacetic acid (DTPA), in protection of HK-2 cells against DU cytotoxicity, as a result of its chelation of UO 2 2+ to prevent the DU internalization and its antioxidant activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.