Abstract

BackgroundThe role of multiorgan damage in the mortality caused by ischemic limb injury is still not clarified. The objective of this study was to examine the potential protective effects of hyperbaric oxygen (HBO) and iloprost (IL) therapy on lung damage induced by limb ischemia/reperfusion injury in a rabbit model, using both biochemical and histopathological aspects.MethodsForty New Zealand white rabbits were randomly allocated into one of five study groups: HBO group (single session of HBO treatment); IL group (25 ng/kg/min infusion of IL); HBO + IL group (both HBO and IL); Control group (0.9% saline only); and a sham group. Acute hind limb ischemia-reperfusion was established by clamping the abdominal aorta for 1 h. HBO treatment and IL infusion were administrated during 60 min of ischemia and 60 min of reperfusion period. Blood pH, partial pressure of oxygen, partial pressure of carbon dioxide and levels of bicarbonate, sodium, potassium, creatine kinase, lactate dehydrogenase, and tumor necrosis factor alpha were determined at the end of the reperfusion period. Malondialdehyde was measured in the plasma and lung as an indicator of free radicals. After sacrifice, left lungs were removed and histopathological examination determined the degree of lung injury.ResultsIn the control group, blood partial pressure of oxygen and bicarbonate levels were significantly lower and creatine kinase, lactate dehydrogenase, malondialdehyde and tumor necrosis factor-α levels were significantly higher than those of the HBO group, IL group, HBO + IL group and sham group. Similarly, the malondialdehyde levels in the lung tissue and plasma levels were significantly lower in the treatment groups compared with the control group. The extent of lung injury according to the histological findings was significantly higher in the control group.ConclusionsThese results suggest that both HBO and IL therapies and their combination might be effectively used in the prevention of lung injury after ischemia/reperfusion injury of the lower extremities.

Highlights

  • The role of multiorgan damage in the mortality caused by ischemic limb injury is still not clarified

  • There was no statistically significant difference between the groups according to the preoperative, ischemia and reperfusion periods

  • Preand postischemic mean arterial pressure was minimally lower in hyperbaric oxygen (HBO) and IL groups when compared with controls

Read more

Summary

Introduction

The role of multiorgan damage in the mortality caused by ischemic limb injury is still not clarified. The objective of this study was to examine the potential protective effects of hyperbaric oxygen (HBO) and iloprost (IL) therapy on lung damage induced by limb ischemia/reperfusion injury in a rabbit model, using both biochemical and histopathological aspects. Re-establishing perfusion after an ischemic period in a tissue worsens the initial ischemic injury. This process is known as ischemia/reperfusion injury (IRI) [1]. IRI may occur in an ischemic extremity or organ (local injury) or in distal parts far from ischemic areas. Free oxygen radicals at the very beginning of reperfusion are known to increase the harmful effect of injury [3]. Free radicalinduced peroxidation of cell membrane macromolecules is an important element of IRI. Lipid peroxidation occurring during I/R is a chain reaction leading to the oxidation of polyunsaturated fatty acids that, in turn, disrupts the structure of biological membranes and produces toxic metabolites, such as malondialdehyde (MDA) [4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call