Abstract

The role of hydrogen sulfide (H2S) in portal hypertension (PH)-induced esophagus-gastric junction vascular lesions in rabbits was observed. The rabbit PH models were established. The animals were randomly divided into the following groups: normal, PH, PH+sodium hydrosulfide (PH+S), PH+propargylglycine (PH+PPG). The plasma H2S levels, apoptosis of esophageal-gastric junction vascular smooth muscle cells, and the expression of nuclear transcription factor-κB (NF-κB), p-AKT, IκBa and Bcl-2 were detected. The cystathionine γ lyase (cystathionine-gamma-splitting enzyme, CSE) in the junction vascular tissue was measured. The results showed that the plasma H2S levels and the CSE expression levels had statistically significant difference among different groups (P<0.05). As compared with PH group, plasma H2S levels were declined obviously (11.9±4.2 vs. 20.6±4.5, P<0.05), and CSE expression levels in the junction vascular tissue were notably reduced (1.7±0.6 vs. 2.8±0.8, P<0.05), apoptosis rate of vascular smooth muscle cells per unit area was significantly decreased (0.10±0.15 vs. 0.24±0.07, P<0.05), and the expression levels of p-AKT and NF-κB were significantly decreased (2.31±0.33 vs. 3.04±0.38, P<0.05; 0.33±0.17 vs. 0.51±0.23, P<0.05), however, IκBa and Bcl-2 expression increased obviously (5.57±0.17 vs. 3.67±0.13, P<0.05; 0.79±0.29 vs. 0.44±0.36, P<0.05) in PH+PPG group. As compared with PH group, H2S levels were notably increased (32.7±7.3 vs. 20.6±4.5, P<0.05), the CSE levels in the junction vascular tissue were significantly increased (6.3±0.7 vs. 2.8±0.8, P<0.05), apoptosis rate of vascular smooth muscle cells per unit area was significantly increased (0.35±0.14 vs. 0.24±0.07, P<0.05), and the expression levels of p-AKT and NF-κB were significantly increased (4.29±0.49 vs. 3.04±0.38, P<0.05; 0.77±0.27 vs. 0.51±0.23, P<0.05), yet IκBa and Bcl-2 expression decreased significantly (3.23±0.24 vs. 3.67±0.13, P<0.05; 0.31±0.23 vs. 0.48±0.34, P<0.05) in PH+S group. It is concluded that esophagus-gastric junction vascular lesions happen under PH, and apoptosis of smooth muscle cells is declined. H2S can activate NF-κB by the p-AKT pathway, leading to the down-regulation of Bcl-2, eventually stimulating apoptosis of vascular smooth muscle cells, easing PH. H2S/CSE system may play an important role in remission of PH via the AKT-NF-κB pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.