Abstract

To investigate the protective effects of hydrogen sulfide (H(2)S) against chronic alcohol intake-induced left ventricular remodeling and explore the potential mechanisms involved. Rats were randomly divided into 4 groups: alcohol group, NaHS group, alcohol + NaHS group, and control group. The echocardiographic and morphometric studies were performed to assess left ventricular remodeling. Oxidative stress was evaluated by detecting MDA, GSH-Px, Tot-SOD, CuZn-SOD and Mn-SOD in the supernatant. Cardiomyocyte apoptotic rate was determined by flow cytometry with Annexin V/PI staining. Western blotting was conducted to detect the expression of Bcl-2 family of apoptosis regulator proteins. The echocardiographic and morphometric data indicated that H(2)S has protective effects against chronic alcohol intake-induced left ventricular remodeling. Our findings showed a significant increase in MDA level and decreases in GSH-Px, Tot-SOD, CuZn-SOD and Mn-SOD activities in the alcohol group compared to the control group, while in the alcohol + NaHS group, a significant decrease in MDA level and increases in GSH-Px, Tot-SOD, CuZn-SOD and Mn-SOD activities were found compared to the alcohol group. The apoptotic rate in the alcohol group was significantly higher than in the control group, whereas apoptotic rate in the alcohol + NaHS group was significantly lower than in the alcohol group. In addition, Bcl-2 and Bcl-xL expression was upregulated and Bax expression was downregulated in the alcohol + NaHS group compared to the alcohol group. Our study demonstrates that H(2)S protects against chronic alcohol intake-induced left ventricular remodeling via attenuating oxidative stress and apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call